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Abstract

Probing is a common operation employed to reduce the position
uncertainty of objects. This paper demonstrates a technique for
constructing provably near-optimal probing strategies for precisely
localizing polygonal parts. This problem is shown to be dual to the
well-studied grasping problem of computing optimal finger place-
ments as defined by B. Mishra and others. A useful quality metric of
any given probing strategy can easily be computed from simple geo-
metric constructions in the displacement space of the polygon. The
approach will always find a minimal set of probes that is guaranteed
to be near optimal for constraining the position of the polygon. The
size of the resulting set of probes is within O(1) of the optimal num-
ber of probes and can be computed in O(n log2 n) time, whereas the
exact optimal solution is in NP-hard. The result of this work is a
probing strategy useful in practice for refining part poses.

KEY WORDS—Pose refinement, probing, fine positioning,
RISC robotics, optical sensing, flexible manufacturing

1. Introduction

In industrial manufacturing and automated assembly, ac-
curacy is extremely important. Attaining and maintaining
high precision can increase the cost of fixturing and feed-
ing several-fold (Nevins and Whitney 1978). The meaning
of high versus low precision depends on the application, but
for typical mechanical assembly, low precision tooling might
provide accuracy in the tens of mils whereas high precision
would be around one mil or less (one mil = 10−3 in. = 25.4
µm). This paper studies the pose refinement problem. In
pose refinement, sensing is used as an inexpensive route to
high-precision part pose, assuming the pose is already known
at low precision. Most research to date in computer vision and
reduced intricacy in sensing and control (RISC) (Canny and
Goldberg 1994) sensing addresses the pose acquisition prob-
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lem, where pose is determined with no knowledge of initial
pose. The result of pose refinement is a high-precision esti-
mate, but it differs from the problem of high-precision pose
acquisition. Because initial pose is approximately known in
pose refinement, it can be used to make judicious choices
about sensor placement. The same accuracy can be achieved
with fewer or less expensive sensors for pose refinement as
compared to pose acquisition, which must deal with all pos-
sible poses.

Initial motivation for tackling this problem arose after vis-
its to several state-of-the-art manufacturing companies, es-
pecially Productivity Technologies Inc., Adept, and Hewlett
Packard Labs. In typical industrial work cells, it was pose
refinement rather than pose estimation that was the dominant
sensing task. There are two reasons for this:

1. Feeder economics: Vibratory feeders are an inexpen-
sive way to provide many part types in known (albeit
low-precision) pose. Small parts can also be fed on
tape, which is more expensive (a couple of cents per
part) but still costs far less than a high-precision pal-
let. So the initial and ongoing costs of achieving low-
precision pose without sensing are small.

2. Multistep manufacturing: In typical manufacturing,
there are not one but several sequential stages, includ-
ing assembly stages, testing, and packaging. A single
step might mate two parts whose poses are known at
high precision. But the assembly step itself introduces
a small amount of uncertainty, and it is expensive to
transport the partial assembly at high precision to the
next assembly stage. A more economical solution is
to use pose refinement at the next stage. So although
there might be one pose acquisition step per part to get
an approximate initial pose, there will be several pose
refinement steps for that part that start with the low
precision output from the previous step and feeder, and
increase the precision as needed for the next step.
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The arguments for pose refinement are that it (1) re-
places the most expensive (high-precision) fixturing and
feeding steps and (2) replaces the most frequent fixturing and
feeding steps in multistep assembly.

This paper focuses primarily on the use of simple light-
beam sensors that act as line probes in three dimensions, or
point probes in the object’s projection onto a horizontal sur-
face. A point light source and receiver define a line in space
that is broken and unbroken by an object as it moves relative
to the beam (see Fig. 1). The positions of the object when
the beam breaks give position readings, and three or more
of these determine pose. Those readings are subject to er-
ror, and the pose estimate accuracy is limited by those errors
and the sensor placement. This research provides algorithms
for choosing the probe placements to achieve near-optimal
accuracy with a fixed number of probes, or to find a near-
minimal number of probes to achieve a specified accuracy.
An important assumption of this work is that individual prob-
ing operations do not disturb or alter the part’s pose in any
way. Common industrial optical sensors easily satisfy this
constraint by being contactless. The problem is best summa-
rized with the following problem statement.

PROBLEM STATEMENT

Given. A polygonal part geometry and an initial pose estimate
of Oi = (Oix,Oiy,Oiθ ) within σ = ‖O−Oi‖m of the exact
actual pose of the object, O. Here, ‖ · ‖m is defined to be the
m-norm.

Assumption. A probing operation leaves a part’s pose
unchanged.

Solve. Find the optimal set of point probes defined as the
minimal number of probes and their placement necessary to
reduce the uncertainty in the position of an object to better
than some acceptable level. The probes are defined by a set
of fixed points and vectors denoting the direction of travel
for each probe. A probe returns a real value. That value
is the time or position that a simple binary sensor changes
state. The error associated with this value is at most ε, where
ε � σ , based on the presence or absence of an object’s edge
at a particular point along the path of the probe.

With enough time, one could simply perform a large num-
ber of probes as shown in Figure 2. However, in real industrial
robotic assembly work cell design, throughput is a heavily
weighted criterion. Therefore, the goal is to produce the best
possible probing strategies that conform to the imposed con-
straints. The probing strategies that result can be used by
any point probe of the object’s two-dimensional projection.
There are natural generalizations to higher dimensions, al-
though they are not as efficient. A typical probe, shown in
Figure 1, consists of a simple reflective light beam sensor that
can easily detect the presence or absence of an object. The
algorithm also allows for construction of specialized optimal

probing strategies such as those for a scanning array of probes
as shown in Figure 3.

These near-optimal probings are obtained with a small
number of actual probes by maximizing the utility of each
sensor probe placed on the object. This in turn makes the prob-
lem tractable for a real robot in a high-throughput automation
system. These strategies are within a constant factor of the
optimal probing strategy and can be solved in O(n log2 n)

time, whereas the exact optimal solution is in NP-hard (Das
and Joseph 1990).

2. Previous and Related Work

We first discuss related work in part probing. Our main result
is to show that probing is dual to the grasping problem, and
to give an optimal probing algorithm based on set coverings.
We then discuss related work on grasping and on set-covering
algorithms.

2.1. Work in Probing

The importance of probing in terms of localizing and identify-
ing objects with probes has been explored by several individ-
uals. Cole and Yap (1987) and Bernstein (1986) developed
algorithms for choosing probes to obtain the geometry of an
unknown two-dimensional convex object. A generalization of
this strategy for higher dimensions was presented by Dobkin,
Edelsbrunner, and Yap (1986), whereas a nonconvex version
was developed by Boissonnat and Yvinec (1992). Also, Lin-
denbaum and Bruckstein (1990) described similar probing
strategies for a geometric probe composed of two line probes
rotating about a common axis point.

The development of efficient algorithms for scanning ob-
jects with probes for the purpose of identification and local-
ization was studied by Wallack, Canny, and Manocha (1993)
and Wallack and Canny (1994) . Likewise, point-probing
strategies were developed for insertion operations by Paulos
and Canny (1994).

Jia and Erdmann (1995) demonstrated an elegant technique
for choosing placements of simple binary sensors to discrim-
inate objects in the plane. In fact, they also employed recent
work on hitting sets and set coverings in solving their prob-
lem. The work in this paper differs mainly in the type of
problem that is solved. Jia and Erdmann chose fixed probes
to discriminate individual object poses from a large set of pos-
sible poses. The problem tackled in this paper is how to best
choose moving probes to refine the pose of a known object.

2.2. Work in Grasping

The need for good grasp-planning algorithms for arbitrary
shapes has always been important for robotics and industrial
automation. The problem of optimal finger placement was
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Fig. 1. A typical simple reflective sensor used for probing.

Fig. 2. Typical initial probe placement along the edges of an object.

Fig. 3. Example of a fixed-array scanning beam sensor.
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addressed by Mishra, Schwartz, and Sharir (1987), who de-
fined easily computable quality metrics for grasps. Marken-
scoff and Papadimitriou (1989) chose to optimize the grasp
with respect to minimizing the forces needed to balance the
object’s weight through friction. Ponce and Faverjon (1991)
fixed the number of fingers and solved a system of linear
constraints in the positions of the fingers to optimally posi-
tion them along the polygonal edges. A similar technique
for three-dimensional polyhedral objects was developed by
Ponce et al. (1991). Goldberg (1993) also detailed a method
for choosing grasps with a parallel jaw gripper when the ini-
tial pose of the object is unknown. Other optimal grasping
techniques based on simple geometric constructions were de-
veloped by Brost (1988) and, later, Mirtich, Canny, and Ferrari
(1992, 1994).

2.3. Work in Set Coverings

This paper will prove that finding the minimal set of probes is
equivalent to solving the convex-set-covering problem. This
problem was discussed by Clarkson (1993), who described a
O(cn logO(1) n) time-randomized algorithm for finding cov-
ering sets of cardinality within O(log c) of the optimal set
covering c.

More recent results by Brönnimann and Goodrich (1994)
on the dual problem of finding minimal hitting sets improve
on these bounds. They demonstrate anO(n log2 n) algorithm
that finds a hitting set of size O(1) from the optimal set size.
They employed work by Matous̆ek (1990) using ε-nets.

3. RISC Robotics

RISC robotics (Canny and Goldberg 1994) is an attempt
to fuse automation and robotics technologies. The RISC
acronym, borrowed from computer architecture, suggests the
parallels between the two technologies. RISC robotics per-
forms complex manufacturing operations by composing sim-
ple elements. A synonymous phrase to describe this theme is
simply “minimalist robotics.”

RISC robotics can be applied to many areas of manufac-
turing. For example, RISC grasping uses simple two- and
three-fingered grippers with traditional fixturing devices such
as clamps and vices (Wallack and Canny 1994). RISC sens-
ing employs simple but precise sensor elements that can be
combined to form complete systems for localizing and recog-
nizing arbitrary objects from a library (Wallack, Canny, and
Manocha 1993; Wallack and Canny 1993).

RISC robotics systems inherently consist of few degrees
of freedom and low-dimensional sensor spaces. This results
in algorithms for manipulation and sensing that are simple,
highly accurate, and very fast.

4. Defining Optimality

When probing an object, the objective is to choose point
probes that allow the minimum variation of the object pose.
Point probes inherently contain some known error, so it is not
enough to take k independent measurements to constrain k

degrees of freedom. The placement of the probes affects the
worst-case object displacement. Therefore, it is the relation-
ship between the object displacements and the corresponding
probe displacements that is of interest. The goal is to find a set
of probe placements that minimizes the potential worst-case
object displacement.

4.1. Object Pose Definition

We defineO as the actual pose of the object in two dimensions
where

O = (Ox,Oy,Oθ).

Our aim in this work is not to locate an object but, rather, to
refine the position of a known object whose pose is known
to some reasonable degree of accuracy. Our approach relies
on this initial coarse accuracy pose information. We define
the assumed initial pose as Oi and quantify a bound on the
worse-case displacement of the assumed pose from the actual
pose as

‖Oi − O‖m ≤ σ,

where ‖·‖m is defined to be them-norm. At this point, we run
into the usual problem of defining a metric on a space with
distance and angular coordinates. There may be application-
specific ways to weight the angular component, but a good
default is to weight the angular component by the object’s
radius (i.e., the largest distance from any point in the object
to its coordinate origin). With this choice, the metric bounds
the maximum distance between any two corresponding points
on the object at O and Oi . A typical value for σ would be
tens of mils. Finally, although we are considering an m-norm
for generality, the 2-norm would seem to be the most natural
choice.

We will be using point probes to refine the position of the
object. Therefore, for a given set of probe measurements,
there will also be a set of valid poses for the object consistent
with those sensor readings. We denote this object pose as
Ō and define it to be an object pose chosen by an adversary
consistent with some sensor readings given the object is at O.
We define the difference between the actual object position
and the adversary’s choice as o

o = O − Ō.

Recall that we are attempting to refine the position of the
object so that σ will always be at least an order of magnitude
larger than ‖o‖
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σ � ‖o‖.
In terms of linear displacement, the initial pose uncertainty, σ ,
is typically on the order of tens of mils whereas the uncertainty
under probing is on the order of one mil or less.

To summarize, we have O as the actual pose of the object,
Oi as our initial pose estimate, and Ō as a pose that an ad-
versary can choose that does not violate our sensor readings.
That is, we cannot determine from the sensors whether the
object is at Ō . We will clarify later exactly how Ō is defined.

4.2. Probe Placement

We construct probes along the perimeter of the object and
denote them as

p = (px, py) l = (lx, ly),

where p is the point where the probe touches the object when
the object is atOi and l is the direction of motion of the probe.
We must guarantee that no matter where the object actually is,
this probe always contacts the same edge. Assuming that the
object radius was used to weight the angular component of
the pose metric, this can be accomplished in a simple manner:
construct a strip about the probe path l whose boundaries are
parallel to l, and at distance σ from it; this strip represents
the possible relative positions of the probe for various actual
object poses O. If the edge we are probing crosses the entire
strip, it will always be probed correctly. If the edge crosses
only part of the strip, then there is a possible O such that this
probe misses the edge completely. From now on, we assume
that all probes are chosen so that their σ -strips touch only the
edge of interest.

The initial probe placement consists of placing a pair of
probes on each edge. Each probe is placed as near as possible
to an endpoint of the edge, but subject to the strip constraint
above. As we shall see, there is no loss of generality with
this step because the probes at the edge endpoints always
provide the most constraining measurements. Our algorithm
will choose a subset of these initial probes as the near- optimal
probe set. Our initial choice is based on the fact that we re-
ceive the most accurate pose information by probing near the
vertices of an object. Observe that probes near the vertices
give rise to large sensor displacements as a result of small
rotational perturbations, whereas position information is the
same anywhere on the edge. Figure 4 demonstrates how mov-
ing a set of probes with a given error out toward the vertices
of an edge shrinks the size of allowable displacements for that
edge.

This set of probes is guaranteed to contain the optimal
probe placement. Any edge-interior probes would provide
only redundant information in the worst case, and our probe
choice is based on a worst-case analysis. A typical initial

probe placement example is shown in Figure 2. The remaining
problem is to determine a subset of these probes that still
provide a substantial gain in object pose accuracy.

4.3. Probing Function

We place a coordinate system at the center of mass (COM) of
the object. In addition, we define the rotational displacement
of the object to be about this COM axis. In Figure 5, we depict
the construction of the corresponding probe displacement for
a given object displacement. This will define the probing
function. In Figure 5 , n is a unit normal to the edge being
probed, p is the initial probe location, and p′ is the probe
location after the displacement O from the origin.

Recall that σ is very small, allowing us to take small angle
approximations and write

p′
k ≈ pk + (Ox,Oy) + p⊥

k Oθ ,

where p⊥ = (x, y)⊥ = (−y, x) and k denotes the kth probe.
It follows that the change in probe position is

�pk = p′
k − pk

= (Ox,Oy) + p⊥
k Oθ .

The probe only gives us useful position information normal
to the edge being probed. We could freely displace the object
along the edge without changing that probe reading. There-
fore, the change in probe position along the edge normal nk
can be written as nk ·�pk . Observe that even if we approach
an edge at an angle, when we detect the edge, we can only
claim that some point of the edge must intersect the detected
point. This is equivalent to the information we receive if we
approach normal to the edge. Therefore, the two probe ap-
proach techniques are equivalent, and thus the choice of edge
approach is independent and left as a final implementation
detail. It does affect the σ -strip described earlier, and the
amount of clearance from the edge endpoint needed to ensure
the correct edge is detected.

We are now ready to define the probing functionP : �3 →
�k to be a real valued function that maps object positions into
ideal probe outputs of the form (P1, P2, . . . , Pk). We define
each element to be

Pk(O) = �pk · nk. (1)

Our probes will have a sensor error ε, typically one mil
or so. We define the measured probes as P̄ ∈ �k . Given a
sensor error of ε, we observe that the measured probe values
P̄ must be consistent with the ideal probes given object pose
O:

‖P̄ − P(O)‖∞ ≤ ε. (2)

Similarly, any possible object position Ō that the adversary
chooses must have all measured probes within ε of the given
measurements:
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region of allowable motion

probe with error ball

a)

c)

b)

Fig. 4. Relationship of placement of probes (solid points) with error balls (dashed circles) along an edge (solid line) and the
resulting displacement region (shaded): (a) probes at endpoints of the edge, (b) probes moved inward from the edge resulting
in a larger region of allowable motion, (c) probes coincident at the center of the edge, allowing a maximum displacement
region.

Fig. 5. Original probe p and resulting probe p′ after an object displacement (Ox,Oy,Oθ ).
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‖P(Ō) − P̄ ‖∞ ≤ ε. (3)

Using the triangle inequality on these last two expressions,
we find that the O and Ō satisfy

‖P(O) − P(Ō)‖∞ ≤ 2ε (4)

and observe that for any Ō satisfying this inequality, there is
a P̄ satisfying eqs. (2) and (3). Thus, the combined bound
is tight. We will call the set of object displacements Ō that
satisfy this inequality K.

Recall that the actual position of the object is defined as O
and the possible interpreted object position for some sensor
reading is Ō, where Ō is any Ō satisfying eq. (4). We want to
constrain the distance between the interpreted object position
and the actual object position to be as small as possible. This in
turn minimizes the worst-case distance between the actual and
measured poses, which is the ultimate goal of pose refinement.
We represent the former quantity as

‖O − Ō‖m. (5)

We employ an adversarial argument and note that if an adver-
sary is allowed to move the object to some valid Ō consistent
with the sensor readings, it will always choose the Ō such
that the quantity in eq. (5) is maximized. We express this as

sup
Ō∈K

‖O − Ō‖m. (6)

However, we are allowed to choose the set of probes P . Fur-
thermore, we desire a set of probes that will output drasti-
cally different values for different nearby object poses, thus
allowing us to identify different poses easily. Essentially, we
would like to eliminate the possibilities of obtaining identical
or near-identical sensor readings for an object in two different
poses. We can write this as

max
P

‖P(O) − P(Ō)‖∞, (7)

or, because P(O) is linear inO, we can make the substitution
to

max
P

‖P(O − Ō)‖∞ (8)

or, rewriting,

min
P

1

‖P(O − Ō)‖∞
. (9)

Equation (6) scales linearly withO−Ō, whereas eq. (9) scales
as the reciprocal of O − Ō. It is natural to combine them as a
product that is then independent of the magnitude of O − Ō:

min
P

(
max
Ō∈K

‖O − Ō‖m
‖P(O − Ō)‖∞

)
. (10)

From this, we can arrive at our final optimality criterion and
probe quality measurement Q:

Q(P ) = min
P

(
max
Ō∈K

‖O − Ō‖m
‖P(O − Ō)‖∞

)
. (11)

5. Displacement Space

Working in displacement space, we observe that there is a
simple geometric construction of the optimality criterion as
given in eq. (11). Displacement space, denoted D ∈ �3, is
the space of all displacements in (x, y, θ) of the object O
to be probed. Each probe sensor that we introduce imposes
constraints on the allowable set of displacements of the object
without violating the probe value.

Equation (4) from the previous section defines a pair of
half-spaces in displacement space D for each probe pk:

‖Pk(O) − Pk(Ō)‖∞ ≤ 2ε

‖Pk(O − Ō)‖∞ ≤ 2ε

‖Pk(o)‖∞ ≤ 2ε

‖nxox + nyoy + (p⊥ · n)oθ‖∞ ≤ 2ε,

where o = O − Ō. These two half-spaces can be written as

nxox + nyoy + (p⊥ · n)oθ − 2ε ≤ 0 (12)

nxox + nyoy + (p⊥ · n)oθ + 2ε ≥ 0. (13)

The intersection of all 2k half-spaces constructed from k

probes by definition represents a convex polytope in D. We
name this polytope S, with the definition

S = ∩h∈H(P )h,

where H(P ) is the family of 2k half-spaces defined by the set
of k probes P .

In displacement space, this polytopeSwill have the farthest
outlying point, which will occur in the nondegenerate case at a
vertex of S. This farthest outlying point represents the largest
object displacement from the assumed pose that still satisfies
the given probe measurements. More formally, we define this
point as

�(S) = sup
q∈S

‖q‖m.

The distance to �(S) is exactly the optimality criteria as de-
fined in eq. (11). To see this, assume that the denominator
of eq. (11) has been fixed to some constant λ. Because the
denominator scales with O − Ō, we can always do this. The
constraint ‖P(O) − P(Ō)‖∞ = λ defines a polytope in dis-
placement space (choice of O), and if we set λ = 2ε, it
defines exactly the polytope S. With its denominator con-
strained, maximizing (11) means maximizing its numerator
‖O − Ō‖, which is exactly what is specified by �(S).
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We assume that P is fixed, so there is only optimization
by the adversary over q. Recall that an adversary can choose
the actual sensor readings P̄ such that the object displacement
�(S) is a valid interpretation of P̄ . Hence, this is the largest
displacement of the object undetectable by the given probing
strategy.

For illustrative purposes, we work through a simple exam-
ple without rotation. In Figure 6, we show three probes on
a triangle, an admittedly simple case, but enough to demon-
strate our method. Note that each probe in real space gives
rise to a pair of parallel half-spaces in displacement space, D.
If we remove probe p2, the area of polygon S in displacement
space increases, which represents the additional translational
freedom that the object can undergo and still remain consis-
tent with the remaining two sensor readings. Therefore, the
added sensor p2 is a useful addition because it decreases the
area of S and reduces the distance to �(S).

We are interested in probing strategies P ′ that have ap-
proximately the same quality metric P . Remember that every
probe we remove from P removes a pair of half-spaces in D.
This in turn changes the shape of S but not always the point
�(S), which defines the optimality criteria. Therefore, we
would like to find other optimal probes with fewer probes. In
particular, we would like to find

min
P ′⊂P

|P ′| : Q(P ′) ≈ Q(P ),

where | · | is simply the cardinality of the set P ′.
We define S′ to be the polytope defined by the intersection

of the half-spaces defined by the probes P ′. Observe that

S′ ⊇ S,

which implies that when we remove a probe, hence two half-
spaces, we expect the farthest outlier to remain where it is or
increase in distance from the origin, giving

|�(S′)| ≥ |�(S)|.
Rather than remove half-planes in an ad hoc manner such

thatQ(S′) remains essentially unchanged, we will dualize and
solve for a minimal convex set covering for the corresponding
points in the dual. This minimal set of points will be exactly
dual to the minimal set of half-spaces in displacement space
by definition of the minimal convex-set-covering problem.
These resulting half-spaces in D correspond to a minimal set
of probes, as desired. We discuss this dualization in the next
section.

Observe that the production of any such probing strategy
is independent of the error, 2ε. This is true because we are
interested in optimizing the ratio shown in eq. (11). One can
also note that topology of the polytope S of the solution space
is independent of ε, which serves only as a scaling factor.
That is, when we double ε, we get the same polytope at twice
the linear size (eight times the volume). Therefore, without
loss of generality, we set ε to one for the duration of the paper.

6. Displacement Space Dual

A strong relationship to grasping is shown in this section. We
show that finding the optimal k probe placements is equivalent
to finding the optimal push-pull grasp for a set of k fingers.
A push-pull grasp is defined as a grasp that employs fingers
capable of exerting a pushing or pulling force at the contact.

We define D
D to be the dual of D. We define the dual

exactly in Table 1. In this mapping, we show how points in
D map to planes in D

D and how planes in D map to points in
D
D . We note that by definition, the dual of D

D is D; hence,
the duality operation is symmetric.

Observe that a polytope S defined as the intersection of a
set of half-spaces hk becomes the polytope SD . We define
Bound(hk) to be the plane on the boundary of the half-space
hk . The polytope SD can also be expressed as the convex hull
of the union of dual points Bound(hk)D

SD = Conv({Bound(hi)
D | i = 1 . . . , k}).

Let r ∈ S. The distance of r from the origin in D is simply

|r| =
√
r2
x + r2

y + r2
θ .

The dual plane rD in D
D by definition is represented as

rxx + ryy + rθ θ = 1.

This distance of the closest point on this plane to the origin in
D
D is given by

|rD| = 1√
r2
x + r2

y + r2
θ

.

Setting α =
√
r2
x + r2

y + r2
θ , we discover that the distance of

this point r from the origin in D is α and the minimal distance
of the dual plane rD from the origin in D

D is 1
α

. Therefore,

|r| = 1

|rD| .

Let fc be the plane closest to the origin of D
D not intersect-

ing Int(SD). The distance to fc is the same as the distance to
the closest point uc in the boundary of SD (which is contained
in fc). And it is easy to see that �(S)D = fc, where �(S)

was defined earlier as the farthest outlying point in S.
The closest point to the origin in the boundary of a poly-

tope lies on the largest inscribed sphere centered at the origin.
Observe that �(S) lies on the smallest circumscribing sphere
of S in D. Therefore, finding the smallest circumscribing
sphere ! for a polytope S is equivalent to finding the largest
inscribed sphere !D of the dual polytope SD . This follows
from the relationship
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Fig. 6. Simple example of probe space and displacement space without considering rotation. Note the removal of one probe
and the resulting change of the polygon S in the displacement space.

Table 1. Duality Mappings

D D
D

p : (px, py, pθ ) ↔ pD : pxx + pyy + pθθ = 1
f : ax + by + cθ = 1 ↔ fD : (a, b, c)

S = polytope ↔ SD = {fD : f ∩ Int(S) = ∅}
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rad(!) = 1

rad(!D)
,

where rad(!) is the radius of the sphere !.
The planes Bound(h) through the half-spaces in D dualize

to the points

Bound(hk)
D = (nx, ny, p

⊥
k ).

These points are equivalent to the wrenches due to unit pull
finger forces acting at p. In the probing problem, we obtain a
pair of half-spaces for each probe. Hence, the optimal prob-
ing problem is equivalent to the optimal push-pull grasping
problem. We use the optimal grasping criteria as defined by
Mishra, Schwartz, and Sharir (1987) and others (Ferrari and
Canny 1992; Mirtich and Canny 1994), which are the set of
finger placements such that the 1-norm of the finger forces
can resist the largest externally applied wrench on the object.
We also define the optimal probe placement as the minimal
number of probes and their placement necessary to reduce the
uncertainty in the position of an object to better than some ac-
ceptable level. Using these metric definitions, we obtain the
following result.

THEOREM 1. Finding the optimal placement of k probes is
equivalent to finding the optimal push-pull frictionless grasp
for a set of k fingers.

7. Hitting Sets and Set Covers

Recall from the previous section that the quality of the prob-
ing strategy is given directly by the radius of the maximally
inscribed sphere in SD . We would like to remove some ver-
tices of SD such that the radius of the maximally inscribed
sphere does not decrease by much.

This problem can be posed as a convex-set-covering prob-
lem. The set-covering problem is stated for arbitrary sets
L and U in �d . The problem is to find C ⊆ U with
L ⊆ Conv(U). Here, L is the sphere of desired radius. This
problem has been studied by several individuals. Recently,
Clarkson (1993) described a randomized algorithm for com-
puting the three-dimensional convex point set covering from
an initial set of n points to withinO(log c) of the optimal cov-
ering of c points. Clarkson’s algorithm had a running time of
O(cn logO(1) n).

Recent work by Brönnimann and Goodrich (1994) im-
proved on both the running time and approximation to the op-
timal convex set covering. Brönnimann and Goodrich’s deter-
ministic algorithm solved the equivalent problem of finding a
minimal hitting set, where a hitting set is a subsetH ⊆ X such
that H has a nonempty intersection with every set R in a col-
lection of subsets of X. The algorithm employs work by Ma-
tous̆ek (1990) on ε-nets to obtain a hitting set in O(n log2 n)

time that is within O(1) of the optimal size hitting set. This
set corresponds exactly to the optimal probe placement, which
we define as a set of c probes that reduce the uncertainty in
the position of an object to at least some necessary level for
the operation to be performed.

In our optimal construction, we obtain pairs of half-spaces,
hence, pairs of points in the dual. However, in the Brönnimann
and Goodrich (1994) algorithm, they are treated as two com-
pletely unrelated elements. This will result in near-optimal
set sizes that are in the worst case twice as large as we could
achieve by grouping the pairs. Alternatively, we can group
the pairs to obtain the near-optimal hitting set at a slight run-
ning time cost. This performance slowdown is a result of an
increase in the VC dimension (Vapnik and C̆ervonenkis 1971)
as a result of our pairing.

The VC dimension (Vapnik and C̆ervonenkis 1971) is de-
fined for a range space (X,R), with P ⊆ X as the cardinality
of the largest set P that is shattered by R. A set P is shattered
by R if +R(P ) is the power set of P , where +R(P ) denotes
the set of all intersections of P with sets in R.

To obtain an optimal probing strategy for an array of scan-
ning sensors as shown in Figure 3, we identify the colinear
points in the displacement space and assign them labels such
that the hitting set algorithm will include all or none of a set
of colinear points in the probe optimization selection. This
also results in an increase in the VC dimension that affects
the running time but still finds a hitting set within O(1) of the
optimal one.

Our algorithm successfully handles other variations simi-
lar to the colinear constraint for the scanning sensor without
major modification. This makes it well adapted to situations
in which optimal probing strategies under special constraints
are needed and not intuitive to observe.

The theorem below summarizes much of the results of this
paper.

THEOREM 2. A near-optimal set of c point probes can be
found for any polygonal object in O(n log2 n) time. Further-
more, the size of the set c will be within O(1) of the size of
the optimal set of c point probes.

8. Conclusion

This paper has demonstrated a method by which optimal probe
placements can quickly be obtained for any known polygo-
nal object. More important, the solutions it generates are
guaranteed to be within a constant of the actual optimal num-
ber of probes necessary. These probing strategies refine the
position of an object whose pose is approximately known.
Furthermore, it is this pose refinement problem that is a real
and frequently encountered challenge in industrial manufac-
turing. The constraint of requiring probes that leave a part’s
pose unchanged after each probing operation is easily satisfied
by employing optical contactless sensors commonly found in
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industry. This paper also shows that the problem of optimal
probe placement is dual to the well-studied push-pull grasping
problem of positioning frictionless fingers on an object.
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